

Exercise Set #12

“Discrete Mathematics” (2025)

Exercise 7 is to be submitted on Moodle before 23:59 on May 19th, 2025

E1. Recall the definition of the Ramsey numbers: We define $R(k, l)$ to be the minimum number of vertices n required to guarantee that any graph with n vertices has a clique of size k or an independent set of size l . Prove that $k \leq k'$ and $l \leq l'$ implies $R(k, l) \leq R(k', l')$.

E2. (a) Show that the Ramsey number $R(3, 3)$ is 6.

(b) Let G be a graph with at least $\binom{k+l-2}{k-1}$ vertices. Show that there is a clique of size k or an independent set of size l .

E3. Let $|X| = n$ with $n \geq 2k$. Show that the Erdos-Ko-Rado theorem is sharp, i.e. that there exists an intersecting family \mathcal{F} of k -element subsets of X such that

$$|\mathcal{F}| = \binom{n-1}{k-1}$$

E4. Prove that each tournament has a Hamiltonian path.

E5. Prove that in any tournament there exists a vertex v that can be reached from any other vertex by a directed path of length at most 2 .

E6. Let K_n denote the complete graph on n vertices. Suppose one colours all the edges of K_n with one of two colours: red or blue.

(a) Let $v \in V(K_n)$ be a vertex. A bad cherry with vertex v is a set of three vertices $u, v, w \in V(K_n)$ such that the colour of the edge uv is different from the colour of the edge vw .

If $r(v)$ denotes the number of edges coming out of vertex v which are painted red, show that the number of bad cherries with vertex v is exactly $r(v)(n-1-r(v))$.

(b) We say that three vertices $u, v, w \in V(K_n)$ form a monochromatic triangle if the edges uv, uw, vw all have the same colour. Show that, for any colouring of the edges of K_n as above, the number of monochromatic triangles is at least

$$\frac{1}{4} \binom{n}{3} - n^2$$

E7. (Exercise to submit)

Show that every red-blue coloring of the edges of K_{14} contains two disjoint red 4-cycles or two disjoint blue 4-cycles.

Hint: Prove that any 2-coloring of K_6 contains a monochromatic 4-cycle.